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Representation of the correlation functions by a sum of two exponentials
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Molecular Dynamics (MD) Simulations

For which applications is the investigation of mass diffusion 
coefficients for liquids with dissolved gases of interest? 
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Which techniques are preferable for the investigation of mass diffusion coefficients? 

Methods studying microscopic fluctuations in macroscopic thermodynamic equilibrium 

Dynamic light scattering (DLS) Molecular Dynamics (MD) simulations

Principle

Data evaluation

Prospects

Study of two further classes of alkane-based solvents: normal alcohols and ionic liquids 

Using DLS data to test the capabilities of MD simulations for the prediction of mutual diffusivities 

Development of simple prediction scheme for mutual diffusivities of liquids with dissolved gases 
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Principle

Data evaluation

Simulation details

Self-diffusion coefficients of gases for binary mixtures of n-alkanes with 
dissolved gases in dependence on molar mass of the gaseous solute

Results and Discussion
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                 of gases dissolved in n-hexane by 1 mole-% 

Force fieldStructure file

Simulation box

Energy minimization

Volume and pressure equilibration

NpT production run for density

NVT production run for gas self-diffusivity
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- Force fields for n-alkanes and gases from literature
- 70 ns production runs for gas self-diffusivities
- 5 independent simulation runs
- Mole fraction of dissolved gas 1%

In agreement with theory, similar values for the mutual diffusivity        and the self-diffusivity of the gas      
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T = (322.867 ± 0.002) K

p = (2.8 ± 0.1) MPa

x
He

 ≈ 0.008
i
 = (4.598 ± 0.002)°
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xHe ≈ 0.03
i
 = (4.599 ± 0.002)°

p = (4.5 ± 0.1) MPa

T = (422.24 ± 0.02) K
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 = (53 ± 1) s

D   = (1.3 ± 0.03)  10−8 m2⋅s−1

C,t = (9.82 ± 0.07) s
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Simulation box containing 
500 n-C H  (1) and 5 N  (2) 6 14 2

molecules (edge length of 4.83 nm)
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Gas self-diffusivity by fit in the linear part ( = 1)
according to the Einstein equation 
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Visual observation during
sample preparation
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 with  = 1 for Fickian diffusive regime 

validation
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Force field

With exception of H  and He, decreasing mass diffusion coefficients with increasing molar mass of gaseous solute

Mass diffusion coefficients for binary mixtures of n-alkanes with dissolved gases
in dependence on temperature close to infinite dilution

Comparison between experimental and simulation data 
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